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Background & motivation

 Great deal of research effort has been made
In the past and continues to be made
Internationally

« Many new assumptions/hypotheses have been
added in an ad-hoc manner to explain
mechanics of USS

e It seems to have been generally accepted that
to model behaviour of a USS requires:

— an additional state parameter viz. suction (Basic
Barcelona Model, 1998 and dozens more)

— an relationship between degree of saturation or
water content, void ratio and suction (Gallipoli et
al., 2003, Salagar et al 2010)




Background & motivation (contd.)

Some of these developments in this area seem

to violate the Occam’s principle
(After William of Occam (derived from the name of a village
(Ockham) in Surrey, England, a fourteenth century logician)

The principle states:
"Entities should not be multiplied unnecessarily."
Or

"Pluralitas non est ponenda sine neccesitate".

The danger is that if you propose one, it might
conflict with the ones which already exist
and are well established




A constitutive model for partially saturated soils

« Partially saturated soil is a composite material
consisting of three phases - soll skeleton, water &
air

 We have already established the constitutive
model for soll skeleton, We know the mechanical
behaviour of water and air (Boyle’s law).

e The relative volumetric measures of the three
phases are dealt with in elementary soill
mechanics




A constitutive model for partially saturated soils

(continued)

« From the above, the response of any partially
saturated soil at any degree of saturation (S,) ,
and suction (s) including their evolution can

be derived

e We do need to take into account some basic
characteristics of micro structure of pores

We don’t need any new
assumptions/hypotheses relating to
constitutive behaviour soil skeleton




A constitutive model for partially saturated soils

(continued)

We do need to make some assumptions
relating to average pore size, pore size
distribution, pore architecture and flow
conditions because three different conditions
may arise and transition may be
discontinuous:

« Water phase continuous but air phase
discontinuous

o Water and air phases both continuous

« Water phase discontinuous but air phase
continuous




Partially saturated solls

at high degrees of saturation
. o’ °
o =0 + Po;,

where, p is the average pressure in the air-water
mixture

Properties of constituents:

< . . s Yl
Oi = Dijklgkl ! p=Ke,
Where K is the compressibility of air-water mixture

Macroscopic constitutive relations:

. .. . K . &
Ojj = Dijklgkl ! Dijkl = Dijkl +F5ij5kl; p=K—




Partially saturated soils (contd.)

The average pore pressure in the air-water mixture, p, IS
defined as

1-S
p:SrpW+(1_Sr)pa_ =T

Y

where S, is the degree saturation, p,, and p, are the
excess of water/air pressure respectively.

p, Is the ‘average of pore size’ defined in a manner
similar to ‘hydraulic radius’ in fluid mechanics, as

vV e

Vv

S, S.(L+e)

S

Py =

where S is the internal solid surface area per unit volume
and e is the void ratio.




Partially saturated soils (contd.)

P, = =K. &% Ky =P;+ Pag

a™ii

pw = ngW

: : Boyle's law
& =B.é&. & =B,é&. y

au’




USS at low degrees of saturation

2 Water phase and air phase both are continuous

Following some mathematics of composite
materials, the eqn. for pressure of water/air
phase can be reduced to

T
p=S,p,+{1=S,)P.——— ; where T is surface tension and p,

\Y

N .
P, =— where S Is the surface area of water
S,, menisci which is less than S,

p, IS again an average or ‘characteristic’ pore
diameter as defined before




USS at low degrees of saturation (contd.)

In this case, suction (S) Is given by:

T
(1_ Sr)lov

Refer to “On the mechanics of partially saturated
soils”, Computers &Geotechnics, 1991

Also ASCE Geotech Eng. censored version, 19937
“On the mechanical response of partially saturated
soils at low and high degree of saturation”,

S = pa_pW:

Proc. Num. Models. Geomech. NUMOG V, Davos, Balkema, 1995




USS at low degrees of saturation (contd.)
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USS at low degrees of saturation (contd.)
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USS at low degrees of saturation (contd.)
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USS at low degrees of saturation (contd.)
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Constant suction tests

e Tests under ‘constant suction’ are essentially
drained tests and as such demonstrate the
behaviour of soil skeleton and give no
additional information

 Unfortunately, a large number of tests
reported in literature are of this type

e Can some one do a series of undrained tests?




Constant suction tests

Test # p (kPa) S (kPa) g; red (kPa) g; calc (kPa) % Error
142 9.7 132 131 0
2 142 14.2 149 135 9
3 137 95 228 200 12
4 280 16 241 255 6
5 340 0 293 293
6 475 10 370° 417 13
7 390 95 377 418 10
8 325 91 384 360 6
9 544 40 500 503 1
10 557 41 500 515 3
11 558 16 508 495 3
12 590 97 567 590 4
13 540 95 567 549 3

This value appears to be too low since even without suction the
strength should have been higher than 410 kPa in view of test # 5.

[University '



Degree of saturation, suction,
void ratio relationship

Many researchers e.g. Gallipoli et al (2003), Salager et
al (2010) have investigated s-e-Sr or s-e-w relationships.

The former propose:




———=dg, o)

1+e
Substituting (2) in (1)
1+e
SIS ( )dgv (3)
e

e=exp ¥ -1 (4)

exp
dS, =S, F: de, (5)

exp -1




Assuming soil as elasto-plastic, represented by the critical state model

de, =de’ +de’ (6)
K dp A—K [(

= > —n*)dp’ +2nd
C1l+e p’ p’(1+e)(M2+772) °)dp’+ 217 q]

where A, k are well known parameters of clays, n is the stress ratio = g/p’)
For isotropic compression n=0 leads to:

' A d
dgv A dp 4 dp (7) CSr:SrI: :| p (8)

— =&
1l+e) p e p - v—-1]p
which can be simplified to Sr — Sr p’ (9)
0
ke = po _
S i S pO : : ..
r = O, ’ This can be compared with empirical
p equations proposed by many researchers.




Degree of Saturation (Sr)
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Degree of Saturation (Sr)
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Degree of Saturation (Sr)
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After Campbell 1984

Size

Coarse Medium Fine Very Fine
Sorting Upper Lower Upper Lower Upper Lower Upper Lower
Ewl sorted 475. 238. 1109. 59. 30. 15. 7.4 3.7
Vw sorted 458. 239. 115. 57. 29. 14. 7.2 3.6
Well sorted 302. 151. 76. 38. 19. 9.4 4.7 2.4
Moderately sorted  110. 55. 28. 14. 7. 3.5
Poorly sorted 45, 23. 12. 6.

Very poorly sorted  14. 7. 3.5




Determination of p,

Three possible approaches:

e Specific surface area (S.;)can be measured for any soil
using many standard techniques. There are standard
tests used in chemical & petroleum engineering and
cement industry which can be adapted for soils

e Average pore size and its distribution has been
correlated (Arya & Paris (1985), Imre (2008, 2012) and
many others) to particle size distribution (gradation
curve) assuming grain shape as

v spherical
v oblong ellipsoidal or platelets (can be done)
 Rapid advances have been made in new technology of
X-ray computer tomography
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Pore diameter histogram

Test L4 by MIP

Fractional volume (%)
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Probability distribution of pipe diameters in
the network is defined by
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Visualisation of pore network and percolation

"



Variation of permeability with mean pore size

Normalised permeability
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Permeability variation with C.O.V.
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Permeability variation

on isotropic loading/unloading
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X-ray CT facility for live tests in KICT

= Switchable hige-power multi tube
type
1) High power target X-ray tube (320kV)

> Closed High power tube (FSS: 0.4mm)
2) Directional target X-ray tube (225kV)

> Micro focus open high power tube

(FSS: 6um) . ~
3) Transmission target X-ray Tube (120kV) - ?nb;i‘:;;%%‘:::ﬁ’x 1000 -
> Nano Focus Open Tube (FSS: 400nm) = Work Table Withstand load: max. 100kg

= 3DCT area: 2300mm x 900mm(h)




X-ray CT facility for live tests in KICT

* |dentification of pores/particles/other phases
- Identification of shape and size of multi-phased distribution
- Calculation of equivalent spheres to each volume of detected shapes

* Determination of channels through connection of pores

(b) Classification of (c) Identification of
material phases connectivity and channels

[University '



X-ray CT facility for live tests in KICT

= Quantification of identities of constituents in specimen

- Identification of each individual constituents in specimen
- Quantification of individual identities and statistics of whole composition
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X-ray CT facility for live tests in KICT

= Quantification of identities of constituents in specimen
- Identification of each individual constituents in specimen
- Quantification of individual identities and statistics of whole composition
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Concluding remarks

* It has been shown that a partially saturated soil can be
treated as a composite material and its constitutive
relation can be obtained simply by applying existing
mathematical procedures of volume averaging.

* When this approach is adopted, evolution of S, p, .nq Pw
with stress are traced.

« The additional parameters required for characterising
the mechanical response of such soils relate to
microstructure as described by a characteristic ‘pore
size’ and its ‘distribution’ as well as its evolution during
loading.

o Particle size distribution or ‘gradation curve’ are
fundamental characteristic of soils and are deeply
embedded in engineering practice. Pore size
distribution is related to gradation curve.




Concluding remarks (contd.)

e Itisimportant to develop a unified program of live
testing with observations at the micro x-ray computer

tomographic level.

 This will not be at the pore level for clays but
Interpretation at voxel level will be sufficient for
practical purposes.

KICT and IC2E would like to have ‘expression of interest’
In a collaboration programme involving CT imaging,
experimental testing and computational advances.
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