EUROPEAN MECHANICS SOCIETY Colloquium 539

Utrecht University, The Netherlands, August 27-30, 2012

Mechanics of Unsaturated Soils – an alternative view

Gyan Pande

Professor Emeritus, Civil & Computational Eng. Centre, Swansea University, Swansea, UK President, International Centre for Computational Engineering (IC2E), Rhodes, Greece

S. Pietruszczak

Professor, Dept. of Civil Engineering, McMaster University, Hamilton, Canada

Hyu-Soung Shin

Research Fellow, Geotechnical Eng. Research Division, Korea Institute of Construction Technology (KICT), Seoul, South Korea

International Centre of Computational Engineering

- **Background & motivation**
- **A procedure to enhance any constitutive model to account for partial saturation**
	- *For high degrees of saturation*
	- *For low degrees of saturation*
- **Suction constant tests**
- **Degree of saturation- suction- void ratio relations**
- **Average pore size and its determination**
- **Influence of pore size distribution**
- **Concluding remarks**

- **Great deal of research effort has been made in the past and continues to be made internationally**
- **Many new assumptions/hypotheses have been added in an ad-hoc manner to explain mechanics of USS**
- **It seems to have been generally accepted that to model behaviour of a USS requires:**
	- **an additional state parameter viz. suction (Basic Barcelona Model, 1998 and dozens more)**
	- **an relationship between degree of saturation or water content, void ratio and suction (Gallipoli et al., 2003, Salagar et al 2010)**

Some of these developments in this area seem to violate the Occam's principle

(After William of Occam (derived from the name of a village

(Ockham) in Surrey, England, a fourteenth century logician) The principle states:

"Entities should not be multiplied unnecessarily."

Or

"Pluralitas non est ponenda sine neccesitate".

The danger is that if you propose one, it might conflict with the ones which already exist and are well established

- Partially saturated soil is a composite material consisting of three phases - soil skeleton, water & air
- We have already established the constitutive model for soil skeleton, We know the mechanical behaviour of water and air (Boyle's law).
- The relative volumetric measures of the three phases are dealt with in elementary soil mechanics

A constitutive model for partially saturated soils

(continued)

- **From the above, the response of any partially** saturated soil at any degree of saturation (S_r) , **and suction (s) including their evolution can be derived**
- **We do need to take into account some basic characteristics of micro structure of pores**

We don't need any new assumptions/hypotheses relating to constitutive behaviour soil skeleton

(continued)

We do need to make some assumptions relating to average pore size, pore size distribution, pore architecture and flow conditions because three different conditions may arise and transition may be discontinuous:

- Water phase continuous but air phase discontinuous
- Water and air phases both continuous
- Water phase discontinuous but air phase continuous

Partially saturated soils

at high degrees of saturation

$$
\dot{\sigma}_{ij} = \dot{\sigma}'_{ij} + \dot{p}\,\delta_{ij}
$$

where, *p* is the average pressure in the air-water mixture

Properties of constituents:

$$
\dot{\sigma}'_{ij} = D_{ijkl} \dot{\varepsilon}_{kl} ; \qquad \dot{p} = \overline{K} \dot{\varepsilon}_V^l
$$

Where *K* is the compressibility of air-water mixture

Macroscopic constitutive relations:

$$
\dot{\sigma}_{ij} = D_{ijkl}^* \dot{\varepsilon}_{kl} ; \qquad D_{ijkl}^* = D_{ijkl} + \frac{\overline{K}}{n} \delta_{ij} \delta_{kl} ; \qquad \dot{p} = \overline{K} \frac{\dot{\varepsilon}_{il}}{n}
$$

Partially saturated soils (contd.)

The average pore pressure in the air-water mixture, *p*, is defined as

$$
p = S_r p_w + (1 - S_r) p_a - \frac{\sqrt{1 - S_r}}{\rho_v} T
$$

where S_r is the degree saturation, p_w and p_a are the excess of water/air pressure respectively.

*ρ*v is the **'average of pore size'** defined in a manner similar to 'hydraulic radius' in fluid mechanics, as

$$
\rho_v = \frac{V_v}{S_s} = \frac{e}{S_s(1+e)}
$$

where S_{s} is the internal solid surface area per unit volume and e is the void ratio.

Partially saturated soils (contd.)

$$
\dot{p}_{w} = K_{f} \dot{\varepsilon}_{ii}^{w} ; \quad \dot{p}_{a} = K_{a} \dot{\varepsilon}_{ii}^{a} ; \quad K_{a} = p_{a} + p_{a0}
$$
\n
$$
\dot{\varepsilon}_{ii}^{a} = B_{a} \dot{\varepsilon}_{ii} ; \qquad \dot{\varepsilon}_{ii}^{w} = B_{w} \dot{\varepsilon}_{ii}
$$
\nBoyle's law

USS at low degrees of saturation

Water phase and air phase both are continuous

Following some mathematics of composite materials, the eqn. for pressure of water/air phase can be reduced to

$$
p = S_r p_w + (1 - S_r) p_a - \frac{T}{\rho_v}
$$
; where *T* is surface tension and ρ_v

ρ^v **is again an average or 'characteristic' pore diameter as defined before**

In this case, suction (s) is given by:

$$
s = p_a - p_w = \frac{T}{(1 - S_r)\rho_v}
$$

Refer to "On the mechanics of partially saturated soils", Computers &Geotechnics, 1991 Also ASCE Geotech Eng. censored version, 1993? "On the mechanical response of partially saturated soils at low and high degree of saturation",

Proc. Num. Models. Geomech. NUMOG V, Davos, Balkema, 1995

- **Tests under 'constant suction' are essentially drained tests and as such demonstrate the behaviour of soil skeleton and give no additional information**
- **Unfortunately, a large number of tests reported in literature are of this type**
- **Can some one do a series of undrained tests?**

Constant suction tests

This value appears to be too low since even without suction the strength should have been higher than 410 kPa in view of test # 5.

Degree of saturation, suction, void ratio relationship

Many researchers e.g. Gallipoli et al (2003), Salager et al (2010) have investigated s-e-Sr or s-e-w relationships.

The former propose:

$$
S_r = \left\{ \frac{1}{1 + \phi e^{\psi} s^n} \right\}^m
$$

$$
dS_r = d(\frac{V_w}{V_v}) = \frac{dV_w}{V_v} - \frac{V_w dV_v}{V_v^2} = -S_r \frac{de}{e}
$$
 (1)

$$
-\frac{de}{1+e} = d\varepsilon_V \tag{2}
$$

Substituting (2) in (1)

$$
dS_r = S_r \frac{(1+e)}{e} d\varepsilon_V
$$
 (3)

$$
e = \exp^{-\varepsilon_V} - 1 \tag{4}
$$

$$
dS_r = S_r \left[\frac{\exp^{-\varepsilon_v}}{\exp^{-\varepsilon_v} - 1} \right] d\varepsilon_v \tag{5}
$$

Assuming soil as elasto-plastic, represented by the critical state model

$$
d\varepsilon_V = d\varepsilon_V^e + d\varepsilon_V^p
$$

= $\frac{\kappa}{1+e} \frac{dp'}{p'} + \frac{\lambda - \kappa}{p'(1+e)(M^2 + \eta^2)} \Big[(M^2 - \eta^2) dp' + 2\eta dq \Big]$ (6)

where λ , κ are well known parameters of clays, η is the stress ratio = q/p') For isotropic compression η=0 leads to:

$$
d\varepsilon_{V} = \frac{\lambda}{(1+e)} \frac{dp'}{p'} = \frac{\lambda}{e^{-\varepsilon_{V}}} \frac{dp'}{p'} \quad (7) \qquad dS_{r} = S_{r} \left[\frac{\lambda}{e^{-\varepsilon_{V}}} - 1 \right] \frac{dp'}{p'} \quad (8)
$$

which can be simplified to $S_{r} = S_{r_{0}} \left[\frac{p'}{p'_{0}} \right]^{x/e}$ (9)

$$
S_{r} = S_{r_{0}} \left[\frac{p'_{0}}{p'_{0}} \right]^{x/e}
$$
 This can be compared with empirical

This can be compared with empirical equations proposed by many researchers.

=

 $\begin{array}{c|c} r & -b r_0 & p \end{array}$

 $\overline{0}$

′

 \rfloor

 $\frac{1}{\eta}$

 \lfloor

Figure 2

Figure 3

After Campbell 1984

Three possible approaches:

- Specific surface area (S_s)can be measured for any soil **using many standard techniques. There are standard tests used in chemical & petroleum engineering and cement industry which can be adapted for soils**
- **Average pore size and its distribution has been correlated (Arya & Paris (1985), Imre (2008, 2012) and many others) to particle size distribution (gradation curve) assuming grain shape as**
	- **spherical**
	- **oblong ellipsoidal or platelets (can be done)**
- **Rapid advances have been made in new technology of X-ray computer tomography**

SWRC - Pore network model

Test L4 by MIP

Visualisation of pore network and percolation

Variation of permeability with mean pore size

Permeability variation with C.O.V.

Permeability variation

on isotropic loading/unloading

Switchable hige-power multi tube

type

1) High power target X-ray tube (**320kV**) > Closed High power tube (FSS: 0.4mm) 2) Directional target X-ray tube (**225kV**)

- > Micro focus open high power tube (FSS: 6µm)
- 3) Transmission target X-ray Tube (**120kV**) > Nano Focus Open Tube (FSS: 400nm)

- **Object Loading Size:** max. ø500mm x 1000mm(h)
- Work Table Withstand load: max. 100kg
- 3DCT area: ø300mm x 900mm(h)

- **Identification of pores/particles/other phases**
	- **- Identification of shape and size of multi-phased distribution**
	- **- Calculation of equivalent spheres to each volume of detected shapes**
- **Determination of channels through connection of pores**

(c) Identification of connectivity and channels

material phases

Quantification of identities of constituents in specimen

- Identification of each individual constituents in specimen
- Quantification of individual identities and statistics of whole composition

Quantification of identities of constituents in specimen

- Identification of each individual constituents in specimen
- Quantification of individual identities and statistics of whole composition

Concluding remarks

- **It has been shown that a partially saturated soil can be treated as a composite material and its constitutive relation can be obtained simply by applying existing mathematical procedures of volume averaging.**
- When this approach is adopted, evolution of S_r $p_{a \text{ and }} p_w$ **with stress are traced.**
- **The additional parameters required for characterising the mechanical response of such soils relate to microstructure as described by a characteristic 'pore size' and its 'distribution' as well as its evolution during loading.**
- **Particle size distribution or 'gradation curve' are fundamental characteristic of soils and are deeply embedded in engineering practice. Pore size distribution is related to gradation curve.**

IOLOGY

Concluding remarks (contd.)

- **It is important to develop a unified program of live testing with observations at the micro x-ray computer tomographic level.**
- **This will not be at the pore level for clays but interpretation at voxel level will be sufficient for practical purposes.**

KICT and IC2E would like to have 'expression of interest' in a collaboration programme involving CT imaging, experimental testing and computational advances.

Thank you for your attention

